Ultra ultrasound to transform new technology

Scientists at University of Queensland and Swansea University’s Department of Physics have developed a new, more sensitive method to measure ultrasound waves. The new sensor, capable of detecting vibrations of living cells, may revolutionise everything from medical devices to unmanned vehicles.

World first experiments at the University of Queensland have combined modern nanofabrication and nanophotonics techniques to build the first ultra precise ultrasound sensors on a silicon chip.

Swansea University reports, according to lead author and Sêr Cymru II Fellow at Swansea University, Dr Sahar Basiri-Esfahani, the impressive accuracy of the technology may change how biology is understood. She said “We’ll soon have the ability to listen to the sound emitted by living bacteria and cells. This is a particularly attractive application, as it could fundamentally improve our understanding of how these small biological systems function. And a deeper understanding of these biological systems may lead to new treatments, so we’re looking forward to seeing what future applications emerge.”

Professor Warwick Bowen, from the University of Queensland’s Precision Sensing Initiative and the Australian Centre for Engineered Quantum Systems, said that the leap forward may usher in a host of exciting new technologies. He said “This is a major step forward, since accurate ultrasound measurement is critical for a range of applications. Ultrasound is currently used for medical ultrasound, commonly to examine pregnant women, as well as for high resolution biomedical imaging to detect tumours and other anomalies. It’s also commonly used for spatial applications, like in the sonar imaging of underwater objects or in the navigation of unmanned aerial vehicles. Improving these applications requires smaller higher precision sensors, and with this new technique, that’s exactly what we’ve been able to develop.”

The new ultrasound sensing technology, for the first time, reaches the regime where its noise is dominated by the random minuscule forces from surrounding air molecules.

Warwick Bowen said “We’ve developed a near perfect ultrasound detector, hitting the limits of what the technology is actually capable of achieving. We’re now able to measure ultrasound waves that apply tiny forces – comparable to the gravitational force on a virus – and we can do this with sensors smaller than a millimetre across.”

The research was supported by the Australian Research Council, the EU’s Horizon 2020 programme (Marie Skłodowska-Curie Actions COFUND), the Welsh Government through the European Regional Development Fund (Sêr Cymru), and the United States Air Force Office of Scientific Research.

The research has been published in Nature Communications.

Free WordPress Themes, Free Android Games